High-Strength Wear-Resistant Silicon Carbide Castable

Silicon carbide castable uses high-purity silicon carbide (SiC) raw material as the main component and adds a certain proportion of micro-powder additives. An unshaped refractory material produced with high-purity refractory cement as a binder. It has excellent properties of high-temperature resistance, wear resistance, erosion resistance, peeling resistance, erosion resistance, and crusting resistance. Amorphous refractory materials with silicon carbide as the main raw material also include silicon carbide spray coatings, silicon carbide plastics, etc., which can be poured, sprayed, and smeared.

Silicon Carbide Refractory Castable
Silicon Carbide Refractory Castable

Advantages of Silicon Carbide Castables

  1. Anti-wear. Since the main component of the material is silicon carbide (SiC), it is also called emery. There are very few natural ones, and those used in industry are all synthetic raw materials. It has two crystal forms. The low-temperature form of β-SiC has a cubic structure; the high-temperature form of α-SiC has a hexagonal structure. Its true density is 3.21g/cm3, and its decomposition (sublimation) temperature is 2600°C. It is a hard material with a Mohs hardness of 9. Synthetic SiC powder is used as an abrasive. The grinding ability of silicon carbide is 0.25~0.28, which is higher than corundum.
  2. High-temperature resistance. Silicon carbide has good high-temperature resistance. Under normal pressure, the inconsistent melting temperature of silicon carbide is 2760°C, reaching 625MPa.
  3. Anti-erosion, anti-oxidation and anti-scaling. When heated to 1000°C, the surface of SiC is oxidized and a layer of SiO2 protective film is formed. This film hinders the diffusion of oxygen and slows down the oxidation rate. The silicon carbide covered by the film is protected and the service life of the silicon carbide material is improved.

At 1300°C, cristobalite begins to precipitate in the film. The crystal form transformation of cristobalite causes cracking of the film and accelerates the oxidation rate.

At 1500~1600℃, the oxidation rate accelerates, but the SiO2 layer produced is also thick, and silicon carbide can still work for a long time. When the temperature rises to 1627°C, the SiO2 layer is destroyed and the silicon carbide oxidation reaction intensifies. Therefore, 1627°C is the highest temperature at which silicon carbide can work in an oxidant-containing atmosphere.

The chemical properties of silicon carbide are relatively stable and have good acid resistance. Silicon carbide does not react with boiling hydrochloric acid, sulfuric acid, or nitric acid. When the temperature is ≤1300℃, it will not be corroded by H2, N2, and COR2O, and it will be corroded by oxides above 1000℃. At high temperatures, silicon carbide is corroded by Cl2, F2, and H2, and can also react with H2O. When the temperature is ≥1370°C, silicon carbide and Cr2O3 react to form metal silicide.

Silicon carbide is not suitable for cutting steel. When the temperature rises, SiC will react with Fe to form ferrosilicon alloy and iron carbide. But silicon carbide can be used to grind cast iron. This is because cast iron has a high carbon and silicon content and is not sensitive to the reaction of silicon carbide.

  1. Thermal shock resistance. When the silicon carbide powder is 150 mesh, SiC is not completely oxidized. Creating gaps or partial gaps around the SiC particles improves the thermal shock resistance and strength of the castable. The SiC that has not been completely oxidized also plays the role of particle reinforcement.
  1. High conductivity. Silicon carbide has strong electrical conductivity and is a semiconductor. When the temperature reaches 2000°C, the electrical conductivity of silicon carbide is equivalent to that of graphite.
Silicon Carbide Castable Refractory Lining
Silicon Carbide Castable Refractory Lining

Application of Silicon Carbide Castables

  1. Molten iron preconditioner linings, cupola furnaces, and induction furnace linings in the steel industry.
  2. Combustion chamber side wall linings and boiler tube protective linings for waste incinerators in the solid waste treatment industry.
  3. In the cement industry, the cement kiln preheater lining, rotary kiln head, and grate cooler wear piers.
  4. The cyclone separator lining the body of thermal power plants in the electric power industry, the combustion chamber, lining, and high-temperature separator return part of the circulating fluidized bed furnace.
  5. Firing kiln shed panels for the ceramics industry.
  6. Reduction of furnace linings such as silicon outlets and aluminum outlets in the non-ferrous metal smelting industry.
  7. Biomass pellet stove burners and other easy-to-wear parts in the energy industry.

Introduction to Silicon Carbide Castable Mix Ratio and Performance

There are very few natural silicon carbides, and most of them used in industry are synthetic raw materials, commonly known as emery. Silicon carbide is one of the non-oxide refractory raw materials commonly used in the field of refractory materials. Clay-bonded silicon carbide castables, oxide-bonded silicon carbide, nitride-bonded silicon carbide, recrystallized silicon carbide, reaction sintering siliconized silicon carbide and other products produced from silicon carbide as raw materials, as well as amorphous refractory materials. It is widely used in blast furnaces, zinc smelting furnaces, ceramic industry kiln furniture, etc. in the metallurgical industry.

Silicon carbide castable has the characteristics of high strength, good wear resistance, and strong slag resistance. The operating temperature is 1500-1700°C. It is generally used in parts that are prone to wear such as cyclone furnaces, boiling furnaces, and boilers, and can meet the technical requirements of thermal equipment. Mix ratio and properties of silicon carbide castables. The density of the aluminum phosphate solution is 1.5g/cm³. The sample without coagulant is dried at 110°C. Aluminum powder with a fineness of 0.09mm is greater than 85%. For castables with added alum powder, the high-temperature compressive strength at 1200°C is 22.5MPa, the load softening temperature at 4% deformation is above 1710°C, and its starting point temperature is 1680°C.

When the kiln lining is thicker, the particle size of the refractory aggregate should be increased to 5mm or larger to reduce the specific surface area of the refractory raw materials. Reduce the amount of aluminum phosphate solution and improve the performance of silicon carbide castables. As we all know, silicon carbide castables will begin to oxidize in an oxidizing atmosphere at about 1000°C. Significant oxidation occurs at 1350°C, and a SiO2 protective layer is formed at the same time, which can prevent SiC from continuing to oxidize. Therefore, aluminum phosphate silicon carbide castable is used in an oxidizing atmosphere, and its long-term use temperature is about 1500°C.

It should be pointed out that as a binder for silicon carbide castables, aluminum phosphate is more commonly used. There are also magnesium phosphate, sodium phosphate, zinc phosphate, boron phosphate, calcium phosphate ammonium phosphate, etc., which can also be used as binding agents but are rarely used in actual projects. Aluminum phosphate binder can be used with any silicon carbide castable. The prepared silicon carbide castable has better performance and achieves better use results. However, the reaction between silicon carbide castables and magnesia materials is severe. When using aluminum phosphate solution as a binding agent, inhibitors or retarders should be added, or solid aluminum phosphate-containing inhibitors should be used as a binding agent, both of which can achieve good construction and use effects.

Rongsheng Kiln Refractory Material Manufacturer

Of course, except for silicon carbide castables whose main component is silicon carbide. There are also silicon carbide added to high aluminum and corundum amorphous refractory materials. SiC can be used as the main component to make SiC castables, or it can be used as an additive component to improve the properties of other castables, especially slag resistance and thermal shock stability. In 1999, Wang Xitang et al. researched and developed the Al2O3-SiC-C blast furnace tap trough self-flowing castable. The castable has high strength, good corrosion resistance, high iron flow, and good thermal shock resistance and oxidation resistance. The most common application of SiC in monolithic refractory materials is for the working lining of blast furnace tap trenches. It has a history of more than 20 years and has good results. At present, Al2O3-SiC-C castables are commonly used in larger blast furnaces at home and abroad, which greatly extends the service life of the iron trench.

Refractory Material Manufacturers Respond – How to Correctly Choose Refractory Castables?

Refractory castables are divided into acidic, alkaline, and neutral castables according to their resistance to chemical attack. According to the volume density, it is divided into dense castable refractory and light castable. According to the materials used, it is divided into aluminum silicate, magnesium, magnesium chromium, corundum castables, etc. There are many types of refractory castables, and it is difficult to make a choice without clear indicators and operating temperatures. RS refractory material manufacturer responded to “How to correctly choose refractory castables” and gave some more reliable methods for reference.

(1) Refractory castables must meet the requirements of the kiln’s usage environment.

Dense refractory castables have different requirements depending on where they are used. When selecting, it should be selected according to the characteristics of the castable. For parts that come into contact with high-temperature flames, high-temperature-resistant castables should be selected. Castables with high-temperature resistance and strong penetration resistance should be selected for parts that come into contact with high-temperature solutions. The parts that come into contact with slag should use castables that are highly resistant to the chemical erosion of slag. High-strength and wear-resistant castables are used for parts that come into contact with the impact and friction of various materials. For parts with frequent temperature changes, castables with excellent thermal shock resistance should be used. As long as it meets the requirements of the main production conditions, it is a suitable refractory castable.

Corundum Refractory Castable
Corundum Refractory Castable

The main uses of lightweight refractory castables are heat insulation, reducing load-bearing structures, lowering furnace shell temperature, and reducing heat loss, thereby achieving energy-saving effects.

(2) Economy of investment cost of refractory castables.

After determining which refractory castable to choose, it is also necessary to economically reduce costs. For example, if the use temperature is 1500°C, castables with a use temperature greater than 1600°C will not be selected if the castables can meet the working conditions. If high alumina bauxite clinker is used as the main material in the wear-resistant parts to meet the wear resistance requirements, castables with corundum as the main material should not be selected. The main reason is that the price of refractory castables varies greatly depending on the content of the main materials used. There is no need to ignore economic costs in pursuit of high quality. This requirement is especially important for parts that are subject to daily wear and tear.

(3) Particle size selection of refractory castables.

The construction parts of refractory castables may be thick or thin, and the particle size ratios used are different. For example, when pouring a lining with a thickness greater than 100mm, more large-grained critical aggregates need to be added to improve structural strength and wear resistance. The parts with a thickness of 10mm when poured or painted have fewer large particles of aggregate. Avoid adding large aggregates to make them protrude from the lining, which not only affects the appearance but also causes large particles to wear easily in terms of use. This causes holes in the lining, which in turn affects the service life. Depending on the pouring thickness, the pouring method or the smearing method can be used. Therefore, the selection of particle size of refractory castables is also very important.

(4) The shelf life of refractory castables.

The storage time of refractory castables in dry areas is about 6-9 months. Before use, check whether there are any agglomerations. During transportation or handling, the castable will agglomerate due to extrusion. If it can be easily patted away, the use effect will not be affected. However, the shelf life of the castables is a secondary consideration, because the configuration processes of the castables are different and most parts are not in stock. All need to be produced according to user needs and the production process adjusted.

It can be seen from the above that the selection of refractory castables is variable and must be used flexibly. To quickly select castables, it is necessary to mention the specific use location, working conditions, use temperature, pouring thickness, and construction method of the castables. The main thing is to find the right method to choose high-quality refractory castables while reducing costs.

Wear-Resistant Castable
Wear-Resistant Castable

Performance Characteristics of Dense Refractory Castables

Dense refractory castable is a construction material used in high-temperature operations. Its main function is to fill and support the furnace while providing oxidation resistance at high temperatures. Dense castables refractory are further divided into aluminate cement castables, chemically bonded refractory castables, clay bonded refractory castables, low cement series refractory castables, self-flowing castables, and new technology refractory castables. The body density is generally around 1800Kg/m³-3500Kg/m³.

Dense refractory castables are generally used for furnace lining, working layer, and permanent layer. According to the use environment, use location, and use requirements, different refractory castables are used to extend the service life of the castables.

High-temperature antioxidant properties. Medium and Dense castables refractory can withstand high temperatures and high oxidation temperatures, and their oxidation resistance is better than other types of castables. Can be used in high-temperature furnaces for a long time.

Reusability. Medium and Dense refractory castables can be reused, reducing environmental pollution and waste of resources.

Density and weight. Medium-Dense castables refractory have a lower density and weight than other types of castables, making them easier to move and fill within the furnace.

chemical composition. The chemical composition of medium and Dense refractory castables can be adjusted according to different requirements to meet different high-temperature environments and application needs.

Stability and reliability. Medium and Dense castables refractory can withstand high temperatures and high oxidation temperatures and maintain stability and reliability over long periods of use.

manufacturing cost. Medium-Dense refractory castables are more expensive to manufacture than other types of castables, but their performance value and cost of use make them a popular high-temperature building material.

RS Kiln Refractory Factory

RS Kiln Refractory Factory can provide high-quality refractory lining materials for high-temperature industrial furnace linings, including various refractory bricks, refractory castables, refractory plastics, etc. If you need to buy Dense castables refractory, Dense refractory bricks for the working lining of high-temperature industrial furnaces. Please contact us. We can provide you with high-quality refractory materials at competitive prices.

What is the Bulk Density of Refractory Castables?

What is the bulk density of refractory castables? This is mainly based on the specific construction site and high-temperature resistance requirements. The preparation of refractory castables is customized according to the index requirements provided by users. These indicators mainly include refractoriness, material chemical composition, bulk density, compressive strength, flexural strength, and so on. Bulk density or bulk density is one of the important indicators, which intuitively reflects the compactness of refractory products and characterizes the mass of refractory materials per unit volume. It is an important measure of the quality level of refractory raw materials and dense refractory products.

RS Monolithic Refractory Castable Factory
RS Monolithic Refractory Castable Factory

The Significance of the Bulk Density of Refractories

Bulk density is the ratio of the dry mass of the refractory material to the total volume. The higher the volume density, the higher the density. The bulk density of the material has a significant effect on many other properties, such as porosity, strength, corrosion resistance, load softening temperature, wear resistance, thermal shock resistance, etc. For lightweight thermal insulation materials, such as thermal insulation bricks, light weight castables, etc., the bulk density is also closely related to its thermal conductivity and heat capacity. Generally speaking, the bulk density of the material is high, which is beneficial to its strength, corrosion resistance, wear resistance, and load softening temperature.

Therefore, with regard to the volume density of refractory castables, each manufacturer has its own standards. In order to increase the bulk density of refractory castables, a reasonable ratio of multi-stage particles should be adopted, which should meet the requirement of “large at two ends and small in the middle”. That is, under the premise of not affecting the performance of refractory castables, adding fine powder matrix or using silicon powder to replace part of the binder material, reducing the amount of water added to increase its bulk density.

Bulk Density of Refractory Castables

The bulk density of refractory castables is different depending on the location of use. It is mainly divided into two parts, namely dense refractory castable and light refractory castable. Dense refractory castables are used for parts that are exposed to high temperature, molten slag, scouring, and thermal shock stress. The use of castables with high bulk density can improve structural strength, wear resistance, slag penetration resistance, thermal shock resistance, etc. Lightweight refractory castables are only used for the material of the thermal insulation layer close to the furnace shell, with the main purpose of thermal insulation. Its strength is low, density is small, porosity is high, and it can’t touch slag or chemically corroded parts.

The density of dense refractory castables configured by different materials is different. For example, the bulk density of clay refractory castables is 2.1~2.2 g/cm3. The bulk density of high-aluminum refractory castables is generally 2.5~2.85 g/cm3, which increases with the increase of aluminum content. The bulk density of clay low cement castable is 2.2~2.3g/cm3. The bulk density of corundum low cement castable is 3.0~3.1g/cm3, etc.

The lightweight refractory castables configured by different materials are different. For example, the bulk density of lightweight floating bead castables is 0.6~1.0g/cm3. The bulk density of the castable prepared with clay porous clinker is 0.8~1.3g/cm3. The volume density of the castable configured with mullite porous clinker is 1.2~1.6g/cm3, etc.

In short, the bulk density of refractory castables depends on the temperature and location of use. For example, the bulk density of high alumina refractory castable is 2.5g/cm3 or 2500kg/m3, which means that a cubic high alumina refractory castable weighs about 2.5 tons. The bulk density of lightweight castables is 0.8g/cm3 or 800kg/m3, representing a cubic weight of 0.8 tons. The volume density of refractory castables is the specific manifestation of bulk density, and the weight of materials required for construction parts can be calculated through this index. Refractory castables will inevitably be lost during the construction process. In order to prepare all the materials at one time, the total quantity can be increased by about 0.5 tons to avoid suspension due to insufficient construction materials.

Refractory Castable Manufacturer and Sales Manufacturer

This is the introduction about the appropriate density of the castable. I hope it will be helpful to you. If you have any other questions, please feel free to contact us. Purchasing suitable refractory materials for the kiln lining, and looking for a suitable refractory lining material solution, the strength of the Rongsheng refractory manufacturer is your reliable guarantee. Our experienced technical team and our advanced refractory production line have won us many return customers and long-term cooperative customers. If you have any questions about refractory materials or refractory lining materials, please contact us or follow our blog.